Digital_Video_Concepts
  • 前言
    • 前言
  • 数字视频简介
    • 数字视频简介
    • 相关概念
    • 视频压缩
    • 权衡分析
    • 新型视频应用
    • 总结
  • 视频压缩技术
    • 数字视频压缩技术
    • 网络限制和压缩
    • 人类视觉系统
      • HVS模型
      • HVS的应用
    • 压缩技术概述
      • 数据结构和概念
      • 色度亚采样
      • 降低冗余
      • 熵编码
    • 压缩技术: 成本-收益分析
      • 变换编码技术
      • 预测编码技术
      • 其他编码技术
      • 率失真理论
    • 总结
  • 视频编码标准
    • 视频编码标准
    • 视频编码的国际标准概述
      • JPEG
      • H.261
      • MPEG-1
      • MPEG-2
      • H.263
      • MPEG-4 (Part 2)
      • AVC
      • HEVC
      • 视频质量的国际标准
    • 其他工业标准概述
      • VC-1
      • VP8
      • VP9
    • 总结
  • 视频质量度量
    • 视频质量指标
    • 压缩损失,伪像,视觉质量
      • 压缩损失:量化噪声
      • 常见的伪影
      • 影响视觉质量的因素
    • 视频质量的评估方法和指标
      • 主观视频质量评估
      • 客观视频质量评估和指标
        • 基于误差灵敏度的方法
        • 峰值信噪比
        • 基于结构相似性的方法
        • 基于信息保真度的方法
        • 时空方法
        • 基于显著性的方法
        • 网络感知方法
        • 基于噪声的质量指标
        • 客观编码效率指标
        • 基于ITU-T标准的客观的质量度量方法
    • 视频质量测量
      • 主观测量
      • 客观测量及其应用
    • 调参
      • 影响视频质量的参数
      • 参数之间的权衡
    • 总结
  • 视频编码性能
    • 视频编码性能
    • CPU速度和限制
    • 提升性能的动机
    • 对性能的考虑
      • 资源利用率最大化
      • 专用资源
      • 调整视频参数
        • 决定编码速度的因素
          • 系统配置
          • 工作负载的性质
          • 编码工具和参数
            • 独立数据单元
            • GOP结构
            • 码率控制
            • 多帧参考
            • 率失真的拉格朗日优化
            • 隔行扫描的帧/场模式
            • 自适应去块滤波器
          • 视频复杂度和格式
          • 基于GPU加速的优化
    • 性能优化方法
      • 算法优化
        • 快速算法
          • 快速变换算法
          • 快速帧内预测算法
          • 快速运动估计算法
          • 快速模式决策算法
          • 快速熵编码算法
        • 并行化方法
          • 数据分区
          • 任务并行化
          • 流水线技术
          • 数据并行化
          • 指令并行化
          • 多线程技术
          • 向量化技术
      • 编译器和代码优化
        • 编译器优化
        • 代码优化
      • 超频
      • 性能瓶颈
    • 性能度量和调整
      • 性能思考
      • 性能指标
      • 性能分析工具
    • 总结
  • 视频应用的耗电量
    • 视频应用的耗电量
    • 功耗及其限制
    • 媒体应用的工作负载
      • 媒体应用用途
    • 面向电量设计
    • 电源管理的思考
      • ACPI和电源管理
      • 操作系统电源管理
        • Linux电源管理
        • Windows电源管理
      • 处理器电源管理
      • Voltage-Frequency曲线
    • 电源优化
      • 架构级别优化
      • 算法级别优化
      • 系统整体级别优化
      • 应用级别优化
    • 电源度量
      • 度量方法论
      • 电源度量的思考
    • 测量电源的工具
      • DC电源测量系统
      • 电源测量的软件工具
    • 总结
  • 低功耗平台上的视频应用的功耗
    • 低功耗平台上的视频应用的功耗
    • 低功耗设备的重要事项
    • 低功耗平台上典型的媒体应用
      • 视频播放
      • 视频录制
      • 视频分发
      • 视频电话(会议)
    • 低功耗系统的状态
      • 简单ACPI模型的缺点
      • 待机状态
      • 低功耗状态的组合
    • 低功耗平台的电源管理
      • 电源管理的专用硬件
      • 显示器电源管理
    • 低功耗平台的思考
      • 软件设计
      • 体系结构的思考
    • 低功耗平台的电量优化
      • 快速执行然后关闭
      • Activity调度
      • 减少唤醒次数
      • 突发模式
      • 完善CPU和GPU的并行化
      • 显存带宽优化
      • 显示功耗优化
      • 存储功耗优化
    • 低功耗的度量
      • 电源的处理器信号
      • 媒体应用的功耗指标
    • 总结
  • 性能,电量以及质量的权衡
    • 性能,电量以及质量的权衡
    • 权衡分析的思考
      • 权衡分析的类型
      • 参数调整的效果
      • 优化策略
    • 权衡性能和功耗
      • Case Study
    • 权衡性能和质量
      • Case Study I
      • Case Study II
    • 权衡功耗和质量
      • Case Study
    • 总结
  • 结语
    • 结语
    • 重点和结论
    • 对未来的思考
Powered by GitBook
On this page

Was this helpful?

  1. 视频应用的耗电量
  2. 测量电源的工具

DC电源测量系统

直流功率测量系统的一个示例是基于National Instruments * 基于PXIe 6363 PCI-express的DAQ和相关的LabView Signal Express软件应用程序,用于信号分析。 PXIe 6363的信号捕获带宽为每秒125万个样本,每个电压输入通道的A/D转换分辨率均为16位。该输入电压可编程至低至±1V,因此很容易放大低压信号。同样,对于当今的低功耗设备,还提供具有更高输入电压的较新版本的PCIe DAQ。 通常,将2毫欧的电流检测电阻与所有感兴趣的电源轨串联使用,例如,CPU封装,内存DIMM和显示器,其峰值,平均值和最小直流功耗为测量。而且,将监视运行时CPU和GPU的频率以确定适当的涡轮运行。每次运行时都会自动校准电源设置,以检测环境温度可能导致的检测电阻和测试线束变化。 为了捕获并计算以瓦特为单位的功率,必须测量每个电源轨的电压和电流。这是通过在每个电压轨上使用与输入电源串联的电流检测电阻器来实现的。电流检测电阻两端的电压降是一个小幅度信号,与流经检测电阻的电流量直接相关。每个电源轨的电压(正极和负极)和电流检测电阻的输出(正极和负极)通过可拆卸的TB-2706接线盒模拟输入模块直接连接到PXIe 6363。 使用LabView Signal Express记录并绘制测得的功率,以生成详细而全面的功率性能曲线。该应用程序可捕获并处理来自PXIe 6363 DAQ模块的电压和电流测量结果,并只需将测得的电压和感测电流相乘即可计算以瓦特为单位的功率。

该应用程序还支持各种统计测量,例如用于详细信号分析的移动平均值,峰值,平均值和最小功率。 图6-10描绘了用于功率测量系统的LabView配置界面的示例。 在该界面中,可以选择感兴趣的电压通道。 然后,图6-11显示了进行功率测量时LabView界面的示例。 顶部和底部窗口分别显示来自所有输入通道和单个通道(通道0)的电压,电流或功率信号。

Previous测量电源的工具Next电源测量的软件工具

Last updated 5 years ago

Was this helpful?